Aymone Kouame

All of Us Program Operational Use

5 active projects

Demo Project: State-level Activity Inequality [Published Work]

How is physical activity distributed within states in the US? Analysis of such activity distributions and inequality can reveal important relationships between physical activity disparities, health outcomes, and modifiable factors, as Althoff et al. studied in their paper, "Large-scale physical…

Scientific Questions Being Studied

How is physical activity distributed within states in the US? Analysis of such activity distributions and inequality can reveal important relationships between physical activity disparities, health outcomes, and modifiable factors, as Althoff et al. studied in their paper, "Large-scale physical activity data reveal worldwide activity inequality" (2017).

Project Purpose(s)

  • Educational

Scientific Approaches

The cohort will consist of Fitbit users in the US, with analysis being subdivided to the state level. Various graphs will be utilized to help visualize the low- and high-activity trends across states. Well-defined measures such as the Gini coefficient will be used to aid in the analysis of activity inequality.

Anticipated Findings

The study aims to find relationships between activity inequality and health outcomes, such as obesity levels. With the growing accessibility of fitness trackers and activity sensors built into personal devices, this study hopes to leverage the volume of available data and potentially inform measures to improve population activity and health.

Demographic Categories of Interest

This study will not center on underrepresented populations.

Data Set Used

Controlled Tier

Research Team

Owner:

Duplicate of How to Get Started with Registered Tier Data (v7)

We recommend that all researchers explore the notebooks in this workspace to learn the basics of All of Us Program Data. What should you expect? This notebook will give you an overview of what data is available in the current…

Scientific Questions Being Studied

We recommend that all researchers explore the notebooks in this workspace to learn the basics of All of Us Program Data.

What should you expect? This notebook will give you an overview of what data is available in the current Curated Data Repository (CDR). It will also teach you how to retrieve information about Electronic Health Record (EHR), Physical Measurements (PM), and Survey data.

Project Purpose(s)

  • Educational
  • Methods Development
  • Other Purpose (This is an All of Us Tutorial Workspace. It is meant to provide instruction for key Researcher Workbench components and All of Us data representation.)

Scientific Approaches

This Tutorial Workspace contains two Jupyter Notebooks (one written in Python, the other in R). Each notebook is divided into the following sections:

1. Setup: How to set up this notebook, install and import software packages, and select the correct version of the CDR.
2. Data Availability Part 1: How to summarize the number of unique participants with major data types: Physical Measurements, Survey, and EHR;
3. Data Availability Part 2: How to delve a little deeper into data availability within each major data type;
4. Data Organization: An explanation of how data is organized according to our common data model.
5. Example Queries: How to directly query the CDR, using two examples of SQL queries to extract demographic data.
6. Expert Tip: How to access the base version of the CDR, for users that want to do their own cleaning.

Anticipated Findings

By reading and running the notebooks in this Tutorial Workspace, you will understand the following:

All of Us data are made available in a Curated Data Repository. Participants may contribute any combination of survey, physical measurement, and electronic health record data. Not all participants contribute all possible data types. Each unique piece of health information is given a unique identifier called a concept_id and organized into specific tables according to our common data model. You can use these concept_ids to query the CDR and pull data on specific health information relevant to your analysis. See our support article Learning the Basics of the All of Us Dataset for more info.

Demographic Categories of Interest

This study will not center on underrepresented populations.

Data Set Used

Registered Tier

Research Team

Owner:

Type 2 DM and Wearables Data RTDv6

Our primary goal is to understand the interaction between activity levels and sleep quality with the development and progression of human disease with a primary focus on type 2 diabetes mellitus. Higher physical activity is associated with lower prevalence and…

Scientific Questions Being Studied

Our primary goal is to understand the interaction between activity levels and sleep quality with the development and progression of human disease with a primary focus on type 2 diabetes mellitus. Higher physical activity is associated with lower prevalence and better outcomes in virtually every human disease. These analyses will generate hypotheses guiding clinical and research interventions focused on activity and sleep to reduce morbidity and mortality in patients seeking care.

Project Purpose(s)

  • Disease Focused Research (type 2 diabetes mellitus)
  • Population Health
  • Social / Behavioral

Scientific Approaches

We will examine the relationship between daily activity (steps, activity intensity) over time and the prevalence and progression of coded human diseases with a primary focus on Type 2 DM. We will use the Fitbit data, EHR-curated diagnoses, laboratory values, quality of life survey results, and clinical outcomes (hospitalizations/mortality).

Anticipated Findings

We expect to find that lower levels of activity are associated with a higher prevalence and more rapid progression of Type 2 DM and other diseases. These data will provide the rationale to link wearables data with electronic health records nationwide as a window into behavioral activity choice as a modifiable risk factor for chronic diseases. We may find substantial variation in activity and disease prevalence/severity by socioeconomic status, which would motivate studies/interventions to reduce these health disparities.

Demographic Categories of Interest

  • Race / Ethnicity
  • Geography
  • Access to Care
  • Education Level
  • Income Level

Data Set Used

Registered Tier

Research Team

Owner:

Duplicate of Skills Assessment Training Notebooks For Users

This workspace contains multiple notebooks that assess users' understanding of the workbench and OMOP. These notebooks are meant to help users check their knowledge not only on Python, R, and SQL, but also on the general data structure and data…

Scientific Questions Being Studied

This workspace contains multiple notebooks that assess users' understanding of the workbench and OMOP. These notebooks are meant to help users check their knowledge not only on Python, R, and SQL, but also on the general data structure and data model used by the All of Us program.

Project Purpose(s)

  • Educational

Scientific Approaches

There are no scientific approach used in this workspace because it is meant for educational purposes only. We will cover all aspects of OMOP, and hence will use most datasets available in the workbench.

Anticipated Findings

We do not anticipate to have any findings. Instead, we are educating people on the use of the workbench and the common data model OMOP used by the program.

Demographic Categories of Interest

This study will not center on underrepresented populations.

Data Set Used

Registered Tier

Research Team

Owner:

Collaborators:

  • Michael Lyons - Project Personnel, All of Us Program Operational Use
  • Hunter Hollis - Project Personnel, All of Us Program Operational Use
  • Christopher Lord - Project Personnel, All of Us Program Operational Use

Work with All of Us Physical Measurements Data - Class Teaching

How to navigate around physical measurements?

Scientific Questions Being Studied

How to navigate around physical measurements?

Project Purpose(s)

  • Other Purpose (Testing and operations purposes)

Scientific Approaches

N/A

Anticipated Findings

N/A

Demographic Categories of Interest

This study will not center on underrepresented populations.

Data Set Used

Registered Tier

Research Team

Owner:

  • Hunter Hollis - Project Personnel, All of Us Program Operational Use
  • Hiral Master - Project Personnel, All of Us Program Operational Use
  • Aymone Kouame - Other, All of Us Program Operational Use
1 - 5 of 5
<
>
Request a Review of this Research Project

You can request that the All of Us Resource Access Board (RAB) review a research purpose description if you have concerns that this research project may stigmatize All of Us participants or violate the Data User Code of Conduct in some other way. To request a review, you must fill in a form, which you can access by selecting ‘request a review’ below.