Gordon Ye

Undergraduate Student, University of California, San Diego

4 active projects

Social Determinants and Healthcare Access in Eye Conditions - v4 Dataset

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute…

Scientific Questions Being Studied

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute to this risk while adjusting for other known risk factors. We are also interested in understanding the availability of social determinants of health data in this data repository compared to EHR clinical data warehouses alone.

Project Purpose(s)

  • Population Health

Scientific Approaches

We will build cohorts of patients with various eye diseases (i.e. diabetic retinopathy, retinal vein occlusions, glaucoma, etc.). Then we will develop concept sets and extract data on outcomes (i.e. development of complications), as well as predictors including clinical data and social data. We will draw on survey data and EHR data within All of Us. When genomic data and wearable data become available, we are interested in evaluating those data sources as well. We will use statistical modeling and machine learning to generate predictive models.

Anticipated Findings

We anticipate that there may be differential risk for developing complications based on disparities in healthcare access and utilization for patients with eye conditions.

Demographic Categories of Interest

  • Race / Ethnicity
  • Age
  • Geography
  • Disability Status
  • Access to Care
  • Education Level
  • Income Level

Research Team

Owner:

  • Terrence Lee - Graduate Trainee, University of California, San Diego
  • Sally Baxter - Research Fellow, University of California, San Diego
  • John McDermott - Graduate Trainee, University of California, San Diego
  • Grace Ahn - Graduate Trainee, University of California, San Diego
  • Gordon Ye - Undergraduate Student, University of California, San Diego
  • Alison Chan - Graduate Trainee, University of California, San Diego
  • Bita Shahrvini - Graduate Trainee, University of California, San Diego
  • Bharanidharan Radha Saseendrakumar - Project Personnel, University of California, San Diego
  • Arash Delavar - Graduate Trainee, University of California, San Diego

Collaborators:

  • Priyanka Soe - Project Personnel, University of California, San Diego
  • Mahasweta Nayak - Undergraduate Student, University of California, San Diego
  • Cecilia Vallejos - Undergraduate Student, University of California, San Diego

SDHA in Eye Conditions - v4 Dataset

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute…

Scientific Questions Being Studied

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute to this risk while adjusting for other known risk factors. We are also interested in understanding the availability of social determinants of health data in this data repository compared to EHR clinical data warehouses alone.

Project Purpose(s)

  • Population Health

Scientific Approaches

We will build cohorts of patients with various eye diseases (i.e. diabetic retinopathy, retinal vein occlusions, glaucoma, etc.). Then we will develop concept sets and extract data on outcomes (i.e. development of complications), as well as predictors including clinical data and social data. We will draw on survey data and EHR data within All of Us. When genomic data and wearable data become available, we are interested in evaluating those data sources as well. We will use statistical modeling and machine learning to generate predictive models.

Anticipated Findings

We anticipate that there may be differential risk for developing complications based on disparities in healthcare access and utilization for patients with eye conditions.

Demographic Categories of Interest

  • Race / Ethnicity
  • Age
  • Geography
  • Disability Status
  • Access to Care
  • Education Level
  • Income Level

Research Team

Owner:

  • Terrence Lee - Graduate Trainee, University of California, San Diego
  • Sally Baxter - Research Fellow, University of California, San Diego
  • John McDermott - Graduate Trainee, University of California, San Diego
  • Grace Ahn - Graduate Trainee, University of California, San Diego
  • Gordon Ye - Undergraduate Student, University of California, San Diego
  • Alison Chan - Graduate Trainee, University of California, San Diego
  • Bita Shahrvini - Graduate Trainee, University of California, San Diego
  • Bharanidharan Radha Saseendrakumar - Project Personnel, University of California, San Diego
  • Arash Delavar - Graduate Trainee, University of California, San Diego

Original - Social Determinants and Healthcare Access in Eye Conditions

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute…

Scientific Questions Being Studied

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute to this risk while adjusting for other known risk factors. We are also interested in understanding the availability of social determinants of health data in this data repository compared to EHR clinical data warehouses alone.

Project Purpose(s)

  • Population Health

Scientific Approaches

We will build cohorts of patients with various eye diseases (i.e. diabetic retinopathy, retinal vein occlusions, glaucoma, etc.). Then we will develop concept sets and extract data on outcomes (i.e. development of complications), as well as predictors including clinical data and social data. We will draw on survey data and EHR data within All of Us. When genomic data and wearable data become available, we are interested in evaluating those data sources as well. We will use statistical modeling and machine learning to generate predictive models.

Anticipated Findings

We anticipate that there may be differential risk for developing complications based on disparities in healthcare access and utilization for patients with eye conditions.

Demographic Categories of Interest

  • Race / Ethnicity
  • Age
  • Geography
  • Disability Status
  • Access to Care
  • Education Level
  • Income Level

Research Team

Owner:

  • Terrence Lee - Graduate Trainee, University of California, San Diego
  • Sally Baxter - Research Fellow, University of California, San Diego
  • John McDermott - Graduate Trainee, University of California, San Diego
  • Grace Ahn - Graduate Trainee, University of California, San Diego
  • Gordon Ye - Undergraduate Student, University of California, San Diego
  • Alison Chan - Graduate Trainee, University of California, San Diego
  • Bita Shahrvini - Graduate Trainee, University of California, San Diego
  • Bharanidharan Radha Saseendrakumar - Project Personnel, University of California, San Diego
  • Arash Delavar - Graduate Trainee, University of California, San Diego

Depression Fitbit Study

Major depressive disorder (MDD) is known to result in changes in physical activity, fidgeting/restlessness, energy levels, and sleep patterns. It has also been established that most MDD patients have recurrent episodes, separated by periods of "remission" that may last 2…

Scientific Questions Being Studied

Major depressive disorder (MDD) is known to result in changes in physical activity, fidgeting/restlessness, energy levels, and sleep patterns. It has also been established that most MDD patients have recurrent episodes, separated by periods of "remission" that may last 2 months or more. The purpose of this study is to assess the ability of the Fitbit data of 1) longitudinally distinguish individuals based on diagnostic severity, and 2) longitudinally distinguish between additional modifiers. We will focus primarily on daily activity (steps) data, and sleep data (once available).

Project Purpose(s)

  • Disease Focused Research (major depressive disorder)
  • Social / Behavioral

Scientific Approaches

We will build datasets and cohorts of individuals meeting the MDD diagnostic criteria, as well as subsets for severity and additional modifiers. We will perform time series analysis of the Fitbit data with machine learning models, and assess their performance in the above questions. We will look specifically for trends and patterns in the time series Fitbit data that may be unique to the MDD group, or subsets.

Anticipated Findings

Consumer-grade technology has been pushing into the field of health and wellness. While previous studies have evaluated the performance of wearables in psychiatric and cardiovascular diseases, none have the sample sizes or data collection lengths made possible by the All of Us. We know that MDD comes with it changes in physical activity, and positive results may reinforce the role of wearable technology as a confirmatory step in the diagnostic process. Null results, on the other hand, will highlight the unique challenges of consumer health-related technologies, especially as these devices are becoming more and more common.

Demographic Categories of Interest

This study will not center on underrepresented populations.

Research Team

Owner:

1 - 4 of 4
<
>
Request a Review of this Research Project

You can request that the All of Us Resource Access Board (RAB) review a research purpose description if you have concerns that this research project may stigmatize All of Us participants or violate the Data User Code of Conduct in some other way. To request a review, you must fill in a form, which you can access by selecting ‘request a review’ below.