Terrence Lee

Graduate Trainee, University of California, San Diego

3 active projects

Social Determinants and Healthcare Access in Eye Conditions - v4 Dataset

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute…

Scientific Questions Being Studied

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute to this risk while adjusting for other known risk factors. We are also interested in understanding the availability of social determinants of health data in this data repository compared to EHR clinical data warehouses alone.

Project Purpose(s)

  • Population Health

Scientific Approaches

We will build cohorts of patients with various eye diseases (i.e. diabetic retinopathy, retinal vein occlusions, glaucoma, etc.). Then we will develop concept sets and extract data on outcomes (i.e. development of complications), as well as predictors including clinical data and social data. We will draw on survey data and EHR data within All of Us. When genomic data and wearable data become available, we are interested in evaluating those data sources as well. We will use statistical modeling and machine learning to generate predictive models.

Anticipated Findings

We anticipate that there may be differential risk for developing complications based on disparities in healthcare access and utilization for patients with eye conditions.

Demographic Categories of Interest

  • Race / Ethnicity
  • Age
  • Geography
  • Disability Status
  • Access to Care
  • Education Level
  • Income Level

Research Team

Owner:

  • Terrence Lee - Graduate Trainee, University of California, San Diego
  • Sally Baxter - Research Fellow, University of California, San Diego
  • John McDermott - Graduate Trainee, University of California, San Diego
  • Grace Ahn - Graduate Trainee, University of California, San Diego
  • Gordon Ye - Undergraduate Student, University of California, San Diego
  • Alison Chan - Graduate Trainee, University of California, San Diego
  • Bita Shahrvini - Graduate Trainee, University of California, San Diego
  • Bharanidharan Radha Saseendrakumar - Project Personnel, University of California, San Diego
  • Arash Delavar - Graduate Trainee, University of California, San Diego

Collaborators:

  • Priyanka Soe - Project Personnel, University of California, San Diego
  • Mahasweta Nayak - Undergraduate Student, University of California, San Diego
  • Cecilia Vallejos - Undergraduate Student, University of California, San Diego

SDHA in Eye Conditions - v4 Dataset

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute…

Scientific Questions Being Studied

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute to this risk while adjusting for other known risk factors. We are also interested in understanding the availability of social determinants of health data in this data repository compared to EHR clinical data warehouses alone.

Project Purpose(s)

  • Population Health

Scientific Approaches

We will build cohorts of patients with various eye diseases (i.e. diabetic retinopathy, retinal vein occlusions, glaucoma, etc.). Then we will develop concept sets and extract data on outcomes (i.e. development of complications), as well as predictors including clinical data and social data. We will draw on survey data and EHR data within All of Us. When genomic data and wearable data become available, we are interested in evaluating those data sources as well. We will use statistical modeling and machine learning to generate predictive models.

Anticipated Findings

We anticipate that there may be differential risk for developing complications based on disparities in healthcare access and utilization for patients with eye conditions.

Demographic Categories of Interest

  • Race / Ethnicity
  • Age
  • Geography
  • Disability Status
  • Access to Care
  • Education Level
  • Income Level

Research Team

Owner:

  • Terrence Lee - Graduate Trainee, University of California, San Diego
  • Sally Baxter - Research Fellow, University of California, San Diego
  • John McDermott - Graduate Trainee, University of California, San Diego
  • Grace Ahn - Graduate Trainee, University of California, San Diego
  • Gordon Ye - Undergraduate Student, University of California, San Diego
  • Alison Chan - Graduate Trainee, University of California, San Diego
  • Bita Shahrvini - Graduate Trainee, University of California, San Diego
  • Bharanidharan Radha Saseendrakumar - Project Personnel, University of California, San Diego
  • Arash Delavar - Graduate Trainee, University of California, San Diego

Original - Social Determinants and Healthcare Access in Eye Conditions

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute…

Scientific Questions Being Studied

We are planning to explore disparities in healthcare access and utilization for patients with eye conditions across different demographic groups. We would like to evaluate risk of developing advanced/severe disease in different eye conditions, and understand how social determinants contribute to this risk while adjusting for other known risk factors. We are also interested in understanding the availability of social determinants of health data in this data repository compared to EHR clinical data warehouses alone.

Project Purpose(s)

  • Population Health

Scientific Approaches

We will build cohorts of patients with various eye diseases (i.e. diabetic retinopathy, retinal vein occlusions, glaucoma, etc.). Then we will develop concept sets and extract data on outcomes (i.e. development of complications), as well as predictors including clinical data and social data. We will draw on survey data and EHR data within All of Us. When genomic data and wearable data become available, we are interested in evaluating those data sources as well. We will use statistical modeling and machine learning to generate predictive models.

Anticipated Findings

We anticipate that there may be differential risk for developing complications based on disparities in healthcare access and utilization for patients with eye conditions.

Demographic Categories of Interest

  • Race / Ethnicity
  • Age
  • Geography
  • Disability Status
  • Access to Care
  • Education Level
  • Income Level

Research Team

Owner:

  • Terrence Lee - Graduate Trainee, University of California, San Diego
  • Sally Baxter - Research Fellow, University of California, San Diego
  • John McDermott - Graduate Trainee, University of California, San Diego
  • Grace Ahn - Graduate Trainee, University of California, San Diego
  • Gordon Ye - Undergraduate Student, University of California, San Diego
  • Alison Chan - Graduate Trainee, University of California, San Diego
  • Bita Shahrvini - Graduate Trainee, University of California, San Diego
  • Bharanidharan Radha Saseendrakumar - Project Personnel, University of California, San Diego
  • Arash Delavar - Graduate Trainee, University of California, San Diego
1 - 3 of 3
<
>
Request a Review of this Research Project

You can request that the All of Us Resource Access Board (RAB) review a research purpose description if you have concerns that this research project may stigmatize All of Us participants or violate the Data User Code of Conduct in some other way. To request a review, you must fill in a form, which you can access by selecting ‘request a review’ below.